化学性质
与单质反应:铟在空气中稳定,加热到熔点以上会氧化成 In₂O₃;能与硫在高温加热的条件下反应,生成 InS 或 In₂S₃;室温下能与氟、氯、溴反应生成 InF₃、InCl₃、InBr₃,加热条件下与碘蒸气发生反应;能与氮气在高温下反应;也能与钍、铌、铂等金属发生反应。
与无机化合物反应:铟能与盐酸、稀高氯酸、稀硝酸等反应生成对应的盐和氢气,与浓硝酸在加热的条件下反应生成硝酸铟、二氧化氮和水;能与过量的氢氧化钠、氢氧化钾反应;还能与氯化铟、溴化汞、硫化铟、三氧化铟等卤化物发生反应。
与有机化合物反应:铟能与烷基氯、烷基溴、烷基碘以及十羰基合二锰等有机化合物反应。
低熔点合金与焊料
铟焊料:
纯铟或铟合金(如铟 - 银、铟 - 镓)因低毒性、高润湿性和抗疲劳性,用于精密电子元件、航空航天设备和医疗器件的焊接,尤其适合高温环境下的密封连接(如真空器件、核反应堆部件)。
易熔合金:
铟与铋、铅、锡等组成的合金(如伍德合金)熔点低(约 70℃),用于消防喷头、电路过载保护装置和模具快速成型。
、其他前沿应用
量子科技
铟原子用于量子计算中的离子阱技术,作为量子比特的载体。
航空航天
铟镀层用于卫星部件的抗氧化和抗腐蚀保护,或作为热界面材料(TIM)传导设备热量。
红外光学
硫化铟(In₂S₃)、硒化铟(In₂Se₃)用于红外透镜、窗口材料和热成像仪。
铟的应用高度依赖其高导电性、透明性、低熔点、耐腐蚀性和独特的核物理性质,尤其在电子信息和新能源领域不可替代。随着 5G、新能源汽车、量子计算等技术的发展,铟的战略地位将进一步提升。然而,铟资源稀缺(全球储量约 5 万吨,主要伴生于锌矿),需关注可持续开采和回收利用(如从废旧显示屏中提取铟)。